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Introduction

High speed digital computers have had a significant impact on the rough surface

scattering community because they provide a new and important problem solving tool.

As an example, computer simulations have led to a much better understanding of the

root causes of the phenomenon known as enhanced backscattering from rough surfaces

[1]. However, to date, it has only been possible to use the full power of the computer on

one dimensionally rough surfaces because the two dimensional rough surface scattering

problem is still too large to be so solved. There is work being done with techniques

which might make the two dimensional problem more tractable on a computer [21;
however, such improvements remain to be thoroughly demonstrated.

This state of affairs leads to the rather obvious conclusion that there is still a

need for further analytical work to reduce the numerical difficulty of the problem to a

more tractable level. The intent here is to isolate, separate out, and perform as much of

the solution as possible using analytical techniques; numerics will only be required for

those parts of the problem where analytical approximations are not possible or

jeopardize the accuracy of the solution. The key ingredient in such a solution is the

development of an approach which is very robust in its capabilities. For example, one

would not want to start out with a boundary perturbation type solution in which both

the surface height and the surface slopes are required to be small if the solution were

going to be applied to surfaces with large slopes. Two approaches have recently been

introduced and are being developed which appear to hold the promise of significantly

improving our capalailities with regard to predicting the scattering from two

dimensional rough stir aces. The first of these is the work of Rodriguez and Kim using

what they call the uD fied perturbation expansion approach [3]; this technique is based

on a small momentum transfer approximation developed earlier by Rodriguez [4]. The

other approach is based on the method of smoothing [5, 6, 7], a demonstration of its

ability to deal with surfaces having arbitrary surface height derivatives for small heights

[8], and a possible extension to surfaces having larger heights [9]. It should be noted

that both of these approaches hold the promise of extending our prediction capabilities

well beyond those of existing asymptotic solutions. The remainder of this report will be

concerned with the solutions which are based on the method of smoothing.

WL-ilever new approximate solutions are obtained for complex problems such as

scattering by ranidomly toough surfaces, it is wise to compare these with existing
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approximations. This is done for two reason. First, it is essential to compare with

known benchmarks in order to check tile accuracy of tile new solution and to see where

it provides improvement. A second purpose, which is frequently overlooked, is to

generate new ideas as to how the new approximation may be iraI)roved even further. It

is this latter reason that forms the basis for this report. The basic intent is to compare

what has been called the normalized first order smoothing (NFOS) approximation with

the conventional composite surface scattering model to (1) first determine what

improvements the latter suggests for the former, and (2) to then demonstrate just how

important these improvements are. The final result will be a new approximate

scattering result which essentially extends the existing composite surface Imodel to a

new class of surfaces. Unlike the conventional composite surface model. this new result

will also contain a well defined methodology for extending its capabilities in the sense of

making it apply to more complicated surfaces. This is a feature that the conventional

composite surface model never exhibited.

Before presenting the main topic of this report, it is first necessary to review the

first order smoothing (FOS) approximation and its capabilities and limitations. Of

particular note is its ability to reduce to the Rice boundary perturbation approximation

provided the surface height is very small in terms of the electromagnetic wavelength

and the angle of incidence is not too close to grazing. Of equal importance is to show

why FOS begins to breakdown as the surface height approaches or exceeds the

electromagnetic wavelength. Identification of the failure of FOS as the height becomes

large suggest a normalization scheme to overcome this limitation and this leads to the

normalized first order smoothing (NFOS) approximation. By analyzing the class of

surfaces to which NFOS should apply and comparing these with the surfaces to which

the conventional composite surface model applies, a means for improving the NFOS

approximation even further is developed. It is this improved NFOS model which

extends the basic smoothing technique to a class of surface not heretofore addressable.

The final result is a smoothing based scattering approximation that is applicable to the

type of multiscale roughness surfaces that are common in nature.

Background

The specific problem to be considered is that of scattering of an incident plane

clectromagn-tic wave by an arbitrarily roughened perfect electric conductor occupying
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the half space defined by z < ((x, y). The roughness height is taken to be zero mean
about the z=O plane, i.e-, (() = 0, and is assumed to be a statistically homogeneous

process. This latter constraint implies that the surface statistics are independent of the

point (x,y) where they are being measured. The region above the roughened conducting

half space, e.g., z > ( (x,y), is taken to be free space. The incident plane wave is
traveling in the direction specified by the unit vector ki and k, indicates the direction of
scattering, see Figure 1.

The current induced on the conducting surface J'(F) obeys the magnetic field
integral equation, e.g.,

(F)= .i(f)+ 2ii(f) x A r. X .J'( I) dSo (1)

which, after multiplying by
V- + (V ( o exp (k• )

becomes
,J(F) = Vi(f) + Lr(f, F.) o.W(fO) (2)

where

Ox. x + (3a)

k, = ko ks o i (3b)

f-(F,) (0Z -• + ) I+-( ?='1 +) ¢1( -,)2 N( r (3c)

g(IA•I) = exp(-jkolA"j)/4rjA•El (3d)

,Sr = V - F'o)11- IFot (3e)

and/k = 21r/A. and

.J(F) = .J(f) V + ( V W)2 (,xp(jks.z) (4a)
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z

Free Space r Z

Perfect Electric Conductor

Figure 1. Scattering geometry
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Pl(f') = 29(f') x fi'(f') exp(jksA() (4b)

0g 0L =Jffdxodyo,=Jf jdý, 0  (4c)

r=-2 9 exp (jkszA() N;(f) x [Srx (4d)

A(= c()- co(•o) (4e)

In the above, 6i(f) is the unit normal to the surface at the point f = + (i on the

surface, a(/ox and 0(10y are the x and y surface slopes, g is the free space Green's

function evaluated on the surface, and tHi is the incident magnetic field. It should also

be noted that r(',fo) is a 3x3 matrix operator. The reason behind manipulating (1)

into (2) is that a simple Fourier transform of the currents appearing in (2) essentially

yields the far zone fields scattered by the rough surface. In fact, previous papers dealing

with the smoothing method [8, 91 have found it advantageous to deal with the transform

of (2); however, in this paper attention will be directed toward the current equation.

The reasons for this will become obvious later.

The basic idea behind smoothing is relatively straightforward. First, the current

is split into a zero mean and a fluctuating parts, i.e.

Quite apart from the approximations this leads to, (5) is a natural decomposition in

that (J) gives rise to the specular or coherent scattered field while 60 leads to the diffuse

or incoherent scattered power. Substituting (5) into (2) and successively taking the

average and fluctuating part of the resulting equation generates two coupled integral

equations for (J) and 6.J. For example, the equation for 60 is

6 = [1 - L(r)] r {r(J) + 6[L6r. e5b} (6)

In (6), 6r is the fluctuating part of the propagator in (2), and 11 - L(r)] - 1 is an operator

in coordinate space but becomes a multiplicative function in transform space. The

specularity of the average scattered field, which has been demonstrated quite

independent of the smoothing method [10], implies the following simplification

5



(J) = j exp (-jkjt.p) (7)

where jt =k •- kiz E and f is a vector number which is independent of any of the

surface coordinates. Substituting (7) into (6) yields

6J= [1 -L(r)] - I6ji+6i(+,- kai).

4 6[L6r. 6- } (8)

where the tilde over 61r denotes the Fourier transform from o space to kit space.

For most surfaces of interest, a good approximation for f is J which is defined by

j2 =2Ho (Ngxhi exp U(ksz - kiz) (9)

where H. is the amplitude of the incident magnetic field and hij is its vector direction.

For Gaussian surfaces, the height and slopes at a common point on tile surface are

uncorrelated so (9) becomes

J= 2H° (x1i) (expU(ksz-ki)j]) (10)

The average ot the exponential height term is recognized to be the characteristic

function of the surface height. Substituting (10) in (8), ignoring the operator [1 - L (r)]

since it has already been assumed to be small (in re-lacing j by ji), replacing 61" by r,

and retaining only the new Born term in the resulting integral equation yields the first

order smoothing (FOS) approximation;

6P(1) = •i'+ 2Ho (expb (ksz-kiz)(]) i • lxli) (11)

It can be shown that 6JP is the term that is most important about the specular

direction, i.e.

ýkitI ko z (12)
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while the second term is the major contributor far away from the specular direction. In

addition, it can be shown (although not easily) that (11) leads to the classic Rice

boundary perturbation result provided that ko,(<<l and the incidence angle is not too

close to giazing incidence. The first restriction permits ignoring the height dependence

in 6O while the second insures that the terms which are ignored are indeed small relative

to the ones retained in the simplification process. It is interesting to point out that

simplifying (11) to the Rice limit does not require small slopes; this would tend to

indicate that the Rice limit is probably more robust than classical derivations would

tend to indicate. Certainly, there are cases in the literature where the Rice Emit

appears to "work" when the classical restrictions would suggest otherwise [11].

Interestingly enough, the FOS appr ximation in (11) clearly shows why it fails as
the surface height becomes large relatix e to the EM wavelength. More specifically, as

the surface roughness height becomes large t! e characteristic function for the height in

(11) decreases; for a Gaussian surface, the. decrease is most rapid. This behavior is

clearly incorrect bccause the increase in height can be brought about by the addition of

a randomly elevated planar component to the surface roughness which has no horizontal
structure and yet it leads to an attenuation of the wide angle scattering contribution in

(11). The difficulty here, as identified and remedied in [9], is that smoothing is only

applicable to surfaces having a relatively small height. The remedy for this situation is

to return to the original current integral equation, (2), and normalize this equation by

the height dependent phase factor appearing in the term PJ in (2). This normalization

leads to

•4l = .J exp[-j(ksz - ki,)4] (13a)

Jni = 2NxH' exp[jkiz(] (13b)

r,, =r(, FO; k -. kiz) (13c)

and

.= ., + L r,, 'n (14)
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Applying smoothing to this normalized equation yields the following integral equation

for the fluctuating normalized current;

6J',, = [1 - L(r,,)] - I {6J,~ + +6f, .jt,, + *[6P 6.J,,} (15)

Assuming that j,' is a good approximation for j, retaining only the resulting Born

term in (15) as the first order approximate solution, and ignoring the operation

[1 - (rn)] - 1 yields the following result for the total normalized current

- (, i) + { 6.Ji +'" *7 (16)

Reintroduction of the phase normalization factor yields the following result for

what has been called the normalized first order smoothing (NFOS) approximation [9];

= {,i + , (17)

where

0 exp b (ksz- kiz)] (18)

Taking the fluctuating part of (17) yields;

= 6"i + () r jn 7 + 61 I" 7, (19)

Comparing (19) with (11), i.e. NFOS with FOS, clearly shows that (19) contains an

additional term which does not go to zero as ko 2((2)-.oo; in particular this term is

Sn i J it, (20)

If it turns out that the operator involving L(*,,) in (15) must be retained then one can

deal with the Fourier tr:.nsforin of (15) because the operator becomes a simple

multiplicative factor in the transform domain. Dealing witii the transform of (15) or
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(19) has the added advantage of producing a quantity that is pit,,lrtional to the

scattered field. In the transform domain, (20) becomes

S :Z, - (21)bo ci rn ,j 1, t(1

where the symbol g denotes convolution. This term has an important interpretation

which will be discussed later in the paper.

Capabilities and Limitations of Normalized Smoothing

The limitation of the FOS approximation is that it will fail if the surface height

becomes large relative to a wavelength. If the surface height is small, FOS has no

limitations [8]. Comparisons with exact numerical solutions will be required to establish

the height range over which FOS exhibits acceptable accuracy. However, this can be

accomplished for one dimensionally rough surfaces where numerical solutions are

available.

Establishing the capabilities and limitations of NFOS is somewhat more difficult.

To accomplish this, the following approach has been adopted. The NFOS

approximation is based on the neglect o:7 the last term of (15), i.e.

6 [L6r,, 6Jj (22)

The only time this term is known to be of negligible consequence is when the surface

height is small because this is when NFOS becomes FOS. Thus, the question to be

addressed is when does the term in (22) look like it corresponds to the case of small

height? More specifically, the question should be when does the propagator 6Pn look the

same as with the small height FOS approximation?

The height dependence in 6F'n appears as the difference

A( = ((ý) - (Co(rio) (23)

both in the phase and the amplitude; see (4d), (3d), and (3e). Starting off with

= (s(,) + z (24)
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where c.(,) is a spatially varying small height component and Z is a random number

yields

() -(O) = S(p) - (S(4) (25)

which is the difference of two small surface heig hts and just like what appears in FOS.

The decomposition in (24) corresponds to thle sum of a spatially variable small height,

(,(;), superimposed on a randomly elevated planar surface, Z. Thus, for this class of
surface roughness, NFOS will be very accurate. Equation (24) suggests that the next

class of surface to be considered is a small variable roughness superimposed on a

randomly elevated and tilted planar subsurface, i.e.

) ()+ z + 1i (26)

where

and m, and my are the x and y components of slope of the planar subsurface.

Substituting (26) into (23) yields

¢(() -o(0(&) = C~()-sP)+ r (-o)(27)

The propagator 6Pn in (22) for the height in (27) is exactly like a small height situation

only with a tilt to the underlying planar surface. However, the term in the small height

case corresponding to (22) is insensitive to global tilting of the underlying surface. This

implies that (22) is negligible for the case of small scale roughness superimposed on a

randomly elevated and tilted planar subsurface. It should be noted that there is no

restriction on the magnitude of the height or the slope of the subsurface.

The next step in constructing a surface to which NFOS will apply is to add some
underlying curvature to (26), i.e.

)=()+ z + + e (28)

10



where e is a vector having (constant) curvature components, i.e.

CX =CRx + Cyy Y+ ZX

and

R = (x 2/2) 5+ (y 2/2) ý + (xy) i

The height difference at two points, using (27). will be

)-() = - + + o) (28)

Unfortunately, tile presence of the curvature terms make it impossible to make the

NFOS propagator 6rn look like tile FOS propagator 61". Hence, when the underlying

surface has a nonnegligiable curvature, it is no longer possible to rigorously argue that

NFOS is accurate. The inability of NFOS to properly account for a nonnegligable

underlying surface curvature comprises the fundamental limitation of NFOS. However,

it should be noted that NFOS provides a result which is very much like the

conventional composite surface scattering model. This can be understood by examining

(19). The first term on tile right hand side is the Kirchhoff approximation which

dominates about the specular direction. The second term is negligible when the

underlying height is large because (o) = 0. The third term in (19) corresponds to the

tilting of the Rice or Bragg scatter solution by the random slopes of the underlying

surface. Equation (19) is an improvement over the composite surface model in that the

small scale surface need not have small height derivatives. Conversely, it is deficient in

that it permits essentially no curvature in the underlying surface. Thus, it can be said

that NFOS provides a composite surface scattering model with improved accounting for

the small scale surface structure but no large scale shadowing effects. Note that the

primary effect of the large scale or underlying surface structure is to give rise to

shadowing in the conventionai composite surface model.

One possible way to improve oii (19) is to iterate (15) one or more additional

times. However, it is not clear what this will produce. In fact, it is well known that
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accounting for such effects as shadowing may require many iterations of (15). Hence,

further iteration of (15) does not appear to be a profitable effort. In the next section, a

somewhat different approach will be developed to provide an improvement to the NFOS

approximation.

A Combination of The Normalized Smoothing and Composite Surface Ideas

In this section, ideas suggested by both the NFOS approximation and the

composite surface model will be combined to produce a more robust scattering model.

The first step is suggested by the composite model and entails splitting or partitioning

the surface roughness spectrum into contiguous parts denoted as large and small scale

subspectra as shown in Figure 2. The partitioning wavenumber k is chosen to satisfy

two criteria. First, it must be less than the electromagnetic wavenumber k,; the

smaller it is relative to k, the better. The reason for this is to insure that all large scale

surface height spatial frequencies are small compared to k,. This condition will permit

the use of quasi-optical approximations in calculating the scattering from the large scale

part of the surface. It is implicitly assumed that the small scale spectrum contributes

most significantly to the total surface curvature, rate of change of curvature, etc. It is

acceptable for the large scale spectrum to contain large surface slopes, but the higher

order surface height derivatives in this spectral region must be small. The second

criterion to be satisfied by the choice of kP is that the FOS approximation, as given by

(11) with ( = (s, is an adequate representation for the scattering from the small scale

structure. This implies that ko((s'2 112 is not too large; the exact range is yet to be

determined.

The conditions imposed on the selection of kp are not unlike those established for

the composite model [121. If anything, they are probably less demanding and it will be

subsequently shown how they may be relaxed even further. In any case, it is important

to note that many natural surfaces do exist for which the spectral partitioning may be

accommodated.

The next step is suggested by the NFOS analysis; equation (2) is normalized by

the phase factor

exp[j(k.,z - kiz)Q] (29)

which depends only on the large scaic height. Equation (2) becomes

12



S(k)

Large Small
Scale j Scale

kP ko k

Figure 2. A partitioning of the surface height spectrum into large and small scale
parts. Note that the electromagnetic wavenumber, ko, should be larger than the
partitioning wavenumber, kp, in order to keep the large scale spectrum smoothly
varying relative to Xo,
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+ Lr ,, (30)

where

,I= J e-xp[-j(ksz - ki,)(] (31a)

x,,t= 2• x H-i (F) expbkiz(, + jksz•]l (31b)

rni= - 2& expbkszAz( + jkizA(I] 1 x [Sr x (31c)

and the argument of the free space Green's function, as a reminder, is

[Az 2 + AY2+ A(21/ 2 = [Ar 2 + Ay2 + (A(s + ACI)2]1/ 2  (32)

When dealing with the NFOS approximation, it was found that NFOS would work very

nicely for an underlying surface comprising a randomly elevated and inclined plane.

The way to adapt this result to (30) is as follows. The integral in (30) is split into two

contiguous parts; the first part encompasses some yet to be determined neighborhood of

the point o = • while the second part includes the remainder of the plane, e.g.
0o

L=ff (J ) dP° = Jf(.) d&, + ff(.)d1do (33)
-00 V•-4l _5Q IV-Pol >Q

Expanding o about the point o = i, Q is determined by requiring that the two term

approximation for (1o, i.e.

CIO ( - 7 (t01,o=• AW (34)

is accurate when

WIAl=VI-4 :5t-Q (35)

Substituting (34) in (32) yields, for (35) to be satisfied,

14



iAF I = [•x 2 + AY2 + (A(, + (,,,Ax + (tvAY) 2 ]1 /2 (36)

Substituting this result in the propagator in (31c) shows that as long as (35) is satisfied,

the integral term looks like the case of small scale roughness superimposed on a

randomly elevated and tilted plane. Hence, the integral equation in (30) can be written

as

.j, JB. + Lorh J,, (37)

where

=Y il + .rlJ 1 (38)

and

=L J (.dý (39)

l -i4I >Q

L = fT (f)dio (40)0 J

IV-4o1 >Q

In view of the restricted range range of the integral in (38) and the fact that V is

constant in this range, it seems obvious that JB is the current J7n1 with the large scale

slope held constant,

"JB = ,fnll V (41)

However, rather than approaching the solution from this somewhat heuristic point of

view, consider the following approach. According to (31b), J111 is independent of (. In

addition, by virtue of the way the area I in (38) was constructed, rn7 is also independent

of (1 in (38). Hence, J'B will be independent of the large scale surface height (I. This

observation implies that (37) can be solved by iteration in which each integration is

performed by the stationary phase approximation provided kiz2 ((12) > > 1. Stationary

phase can be used because of the phase factor

15



exp(jkizA•/)

in rnl (see (31c)) and because the point

has been specifically excluded from the range of integration in (37). The solution of

(37), under these conditions, can be inferred directly from previous work on integral

equations of this kind [13];

"fill = Si/ ]B + ro,,s (42)

where Sit is the large scale dependent, incident shadowing function defined to be unity if

a point on the surface is not shadowed from the incident field by the large scale surface

and zero if it is. It is important to note that only the large scale surface enters into the

determination of the shadowing function. The term "roms" in (42) stands for "ray optic

multiple scattering" and it represents the rays that bounce around on the surface (by

two or more bounces) before traveling into the upper free space. Although these rays

can be accounted for, it is a most tedious "book keeping" effort to do so and they will

be ignored in the remainder of this paper, e.g.

Jil !:" Sit S/B (43)

Substituting (43) in (37) yields

B J + Ls a , 'B (44)

It is interesting to consider what (43) and (44) imply relative to shadowing. If the area

I is shadowed then Sit is zero in (44) and this yields

However, substituting this result in (43) produces

16



Jll = 0 (45)

Conversely, if the area I is not shadowed so that Si = 1 then using (43) in (44) yields

-il, = . ,,z+ L r,,,.9 J (46)

Thus, (45) and (46) are the appropriate solutions when either the point (•7, + C) is

shadowed or illuminated, respectively, by the incident field. Consequently, it is only

necessary to multiply the solution of (46) by the large scale shadowing function to have

a complete accounting for the effects of shadowing. Equation (46) can be solved using

the method of smoothing because it was set up to be amenable to such a method. The

only point of caution is to recall that the large scale surface slope is taken to be

constant in the area I. Proceeding as in obtaining (16) yields 1

J ) = "li+Ll (Jnl) (4 7)

or. with the inclusion of the shadowing function,

s.'{.J1, +Lr ( 1 )}(48)
I

where, in review,

. = 211,N x hii exp[j(ksz - kiz)(s - J it" 0T] (49a)

(.inli) = 2H, (Niv - x hi (exp[j(ks. - kiz) 8Ilexp( - Jkait ) (49b)

S= - 09 exptjkszA(s + jki, V (Ie AI] 1 x [Sr x (49c)

'It is assumed that the Fourier transform of the average propagator .r d) is

negligibly small. If this is the case then L(r,,) may also be ignored. If the average

propagator cannot be ignored, it can be shown that (47) becomes

f (1) = (I- L(r .,+ Ur,,[-- L(r )J- I(i

il ldI' {01 ±L, ,[I I '1
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A(S = (.5 - (so (49d)

At = (x - xo):k + (y - Yo)Y =: Axi + Ayý (49e)

v ( = a I/x R + eOQ/ay ý (49f)

Af = {AX2 + Ay 2 + (A(, + V ( _ AW)2}l/2 (49g)

Also, H. is the amplitude of the incident magnetic field, hi is its direction, and (NI V ()

is the conditional average of N conditioned on holding the large scale slopes constant. It

must also be remembered that in (48), the large scale slopes V are to be held

constant. To complete the evaluation of the current, the normalizing phase factor must

be reintroduced, e.g.

J = 0 {.y-%i + Lr,,.(.J)} (50)

where

€ = expj(k,, - kiz)(1] (51)

The far zone electric field scattered by the surface is given by

Es(R) = -jkog(R) {J (j)-fks .- J (kst)]ks} (52)

where R is the distance from the origin of the coordinate system on the mean surface to

the point of observation, k, is a unit vector pointing in this direction,

11= Rk,
an d

J (kS)O= J ý'( exp(j k st. )dý (53)

where

k.q = ko(sino., cos 0, R + sinO, sin Y)
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i = Xi+ yý

Discussion of Results

Equation (50) is the central result of this paper. To the author's knowledge, it

represents the first tractable description of the current induced on a multiscale surface.

There are certain advantages to dealing with the current rather than the far zone

scattered field. This becomes especially clear if it is desirable to study Fresnel zone

scattering from a rough surface.

While (50) contains a number of approximations, it represents a considerable

improvement over the conventional composite surface scattering model. Paramount

among these is the fact that the small scale part of the surface need not have small

surface height derivatives. This result follows from the use of FOS to estimate the

current induced on the surface within the surface area I. In the conventional composite

model, boundary perturbation theory is used to estimate the effects of the small scale

structure and it is much more limited in its range of applicability. Another subtle

improvement provided by (50) is use of a finite area, I, rather than an infinite one.

This finite area is tailored to the large scale slopes. That is, it is the largest area over

which the effects of large scale curvature may be ignored. Thus, if one were dealing

with surfaces for which the large scale rms slopes are not too large but large scale rms

curvature is moderate2 then I in (50) would have to be decreased relative to its value

when the rms slope-to-curvature ratio were larger. It should be noted that this effect

builds into the solution a dependence upon the large scale curvature that is quite

independent of the method used to analyze the scattering from the large scale surface

structure. This dependence requires further study in order to understand its full

importance. However, it is possible to provide some estimate of the effect of reducing I

as follows. If I is infinite,

L r,. -;, (54)

2It is assumed that the large scale curvature is sufficiently small to permit the

use of stationary phase integration techniques on the large scale surface.
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where the tilde denotes th,: Fourier transform (from & to - iit) and j,, is a constant

vector. If I is finite, it is necessam, to convolve (54) with a transformed support

function representing the finite size of I. This convolution ha.- the effect oi blurring or

smearing the sharply defined effects contained in 11,i"l.

It is interesting to see how (50) reduces to the conventional composite surface

scattering model. The details are very involved and will only be highlighted here. The

term

s i l ¢ J , i

in (50) is what gives rise to the quasi-optical part of the scattering that is dominant in

and about the specular direction. Note that this term contains large scale incidence

shadowing (Si'), deep phase modulation associated with the large scale height (see

equation (51)), and attenuation due to the small scale height ((.J, ')). Apart from this

small scale dependent attenuation, the remaining factors are large scale dependent and

have been treated previously by Sancer [14]. If the small scale surface height is very

small and the large scale curvature is so small that

00

then the terms

in (50) will go to the Rice boundary perturbation solution on a tilted plane; the tilt

being provided by the large scale surface slopes. After multiplying by Sil/, taking the

Fourier transform to generate the scattered field, sq,:aring and averaging to produce the

second moment of the scattered field, the net effect is to obtain a smeared Bragg

scattering. The smearing results from the range of possible values for the large scale

slopes as dictated by the probability density function of the slopes. Thus, (50)

reproduces the conventional composite surface model under the same set of

assumptions that are usually associated with the conventional model.

There is one final point about the method introduced here that warrants
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discussion. While it is clear that a small scale surface can always be split off from the

total surface, it is not so obvious that the resulting large scale features will satisfy the

criteria placed on them. For example, it may be necessary to include wave diffraction

effects in the solution of (37) rather than just wav,? reflhction and shadowing as in (43).

In a purely formal sense, the solution of (37) is given by

[-i - Li' 1- 'TB (55)

so the integral equation for J' is

J = -J,,?+ [- LL,,-] -JB (56)
1 0"

and within the confines of first order smoothing

6Bj(1) [1 (A)I {,6.J,,i+ LA [I - (A)]-' 1 (.Ji) (57)

where

A il. [1 - LI'71o,-
0

Thus, (53) becomes

*Y' 1i) 1 = L1'-,,- {[I -(A)] - (.li) + 6,B(1))} (58)
0

Equation (58) represents an approimate solution foi the normalized ck..rrent based on

an exact solution for the long iange interactions on the surface and a first order

smoothing approximation for the short range interactions. Equation (55) represents the

former while (557) represents the latter. It is clear from (55) and (58) that the long

range solution is highly dependent upon ones ability to invert the operator [1 -Lo'd]. In

the optical limit, (43) shows that

[1 -Lor,,t]I•i (`59)
0

where ray optic multiple scattering terms have been ignored. If wave diffraction is to,
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be included, it will be necessary to do something like suggested by Chaloupka and

Meckelburg [15] and Ansorge [16]. The important point is that the new method

presented in this paper not only improves on the classical comnposite surf;,ce scattering

model but it clearly shows how further improvementts imist procCd.

Summary

This paper adapts and combines the fundamental principles comprising the

conventional composite surface scattering model and the niorniali:2(.d first order

smoothing (NFOS) approximation to provide ta new approach to the problem of

scattering by multiscale surfaces. The conventional composite surface model suggests

partitioning the surface into two- subscales which have rms heights that are small and

large relative to a wavelength. The NFOS apl)proximation suggests normalizing the

basic integral for the current. induced on the surface by the large scale height dependent

phase factor contained in the Kirchhoff term to produce an integral equation that is

more amenable to the first order smoothing approximation.

The real heart of the improvement renidere(l by this approach stems from

splitting the integral in the current integral equation into dte sum of one encompassing

the immediate neighborhood of the observation point and one including all of the

remaining surface. The exteint of the former integration is chosen such that time large

scale surface has essentially a constant slope within this region. The sum of this

integral and the Kirchhoff term act as the Born term in the integral equation involving

the rei..-;ning int:.gral term. This equation ma.y be solved by iteration in the high

frequency limit and, hence, yiclds the shadowed Born term as the solution. Thus, the

net effect of the large scale solution at this point is simply to shadow the new Born

term. The solution of the resulting finite range integral equation is accomplished by

first order smoothing and is valid as long as the small scale height is not too large

(relative to the wavelength) but its validity is independent of 'he surface slopes,

cnrvat-t-, etc.

The net result of this analysis is an expression for the surface current which

contains all of the fimdamental features of the conventional composite surface scattering

model plus some mnarked improvements. The latter entail accounting for more general

small scale surface structure and an estimate of the effects of the large scale surface

curvature on the scattering from the small scale features. Finally, this result is

amenable to correction for such p1henomenon as high frequency diffraction by the large
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scale surface. Although it is essential to expose this result to extensive computation for

the purpose of establishing its range of validity, thei basic merits of the new result are

clear. Of particular note is the fact we now have an expres.sion for the current induced

on a imltiscale rough surface rather than just one of scattered field momients. The

advantages of this knowledge are obvious.
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